

Spatial-temporal variation of winter warm spells in Italy over the period 1993-2022

<u>Annalisa Di Bernardino^{1,*}, Anna Maria Iannarelli², Stefano Casadio^{2,3}, Anna Maria Siani¹</u>

¹ Physics Department, Sapienza University of Rome, Rome, Italy

² SERCO Italy, Frascati, Rome, Italy

³ ESA/ESRIN, EOP-GMQ, Frascati, Roma, 00044, Italia

* annalisa.dibernardino@uniroma1.it

EGU General Assembly 2024

Session AS1.26 - Extreme Events: Observations and Modeling Vienna, 14-19 April 2024

Increased frequency of extreme weather events (droughts, floods, **heat waves**)

Increased frequency of extreme weather events (droughts, floods, **heat waves**)

WINTER WARM SPELLS

Winter Warm Spell (WWS)

"sequence of at least <u>six consecutive days</u> when the daily maximum temperature $(TX_{i,j})$ on the *i*-th day during *j*-th period <u>exceeds the calendar day 90th percentile</u> of the base period $(TX90_{i,ref})$ "

Expert Team on Climate Change Detection and Indices (ETCCDI) Karl et al., 1999

unlike summer heat waves, WWS are still scarcely studied!

Shabbar and Bonsal, 2003; Tomczyk et al., 2019

Ecosystems: variation in balance of species *Sippel et al.*, *2017*

<u>Agriculture</u>: earlier germination *Flanigan et al.*, 2020

Vegetation: early flowering *Walck et al., 2011*

Insects: change in demographic rates and community structure *Ma et al.*, 2015

EGU General Assembly 2024, Vienna 14-19 April 2024

OBJECTIVES

The main aims of this contribution are:

- to analyse the temporal and spatial variability of WWS based on wintertime daily maximum temperature observations collected at eight sites of the Italian peninsula over the period 1993-2022;
- to assess how the reduction of the WWS period length threshold influences the identification of the events.

STUDY AREA AND IN-SITU OBSERVATIONS

Period: Boreal r

Boreal meteorological winter (01/12-28/02, DJF) 1993-2022

* <u>Sites:</u> airpor

airport stations providing TX time series over the years 1993-2022

Station	ICAO code	Lat. (°N)	Lon. (°E)	Altitude (m a.s.l.)	Köppen-Geiger climate class	Percentage of missing data during DJF	
Trieste - Ronchi dei Legionari	LIPQ	45.83	13.47	12	Cfa	2.2%]
Treviso - Sant'Angelo	LIPH	45.65	12.19	17	Cfa	2.8%	North
Torino - Caselle	LIMF	45.20	7.65	302	Cfb	2.9%	J
Roma - Ciampino	LIRA	41.80	12.60	130	Csa	2.9%	Control
Napoli - Capodichino	LIRN	40.89	14.29	90	Csa	4.8%	
Santa Maria di Leuca	LIBY	39.82	18.35	112	Csa	3.7%]
Trapani - Vincenzo Florio	LICT	37.91	12.49	7	Csa	2.1%	- South
Sigonella	LICZ	37.40	14.92	24	Csa	0.2%	J

SPATIAL-TEMPORAL VARIATION OF WINTER WARM SPELLS IN ITALY OVER THE PERIOD 1993-2022

6

IDENTIFICATION OF WINTER WARM SPELLS

sequence of at least six consecutive days when the daily maximum temperature $(TX_{i,j})$ on the i-th day during j-th period exceeds the calendar day 90th percentile of the base period $(TX90_{i,ref})$.

Expert Team on Climate Change Detection and Indices (ETCCDI) Karl et al., 1999

The 90th percentile is calculated for each calendar day by considering a 5-day window centred on a given day, as required by ETCCDI.

Base period: 1993-2022

For each station, the following ETCCDI climate indices have been computed:

- TX90P: annual count of days when the daily maximum air temperature (TX_{i,j}) on the i-th day during j-th period exceeds the calendar day 90th percentile centred on a 5-day window for the base period (TX90_{i,ref}).
- **WSDI (WARM SPELL DURATION INDEX):** annual count of days meeting the aforementioned definition of warm spell. The count is limited to the winter period (DJF).

TEMPORAL TRENDS OF WINTERTIME TX

Average daily maximum temperature (TX, blue lines) and 90th percentile of TX (TX90, red lines) for the eight selected stations over the DJF months of the period 1993-2022.

Results of Seasonal Kendall (SK) test for TX. The values of Kendall correlation coefficient (τ), SK slope, and intercept of Kendall-Theil Robust Line are given. Results refer to the DJF months of the period 1993-2022.

Station	τ	SK slope (°C/year)	Intercept (°C)	Trend	
LIPQ	0.10	0.01	9.3	1	ן
LIPH	0.07	0.00	9.0	1	- North
LIMF	0.08	0.01	7.3	1	
LIRA	0.11	0.01	12.4	1	Control
LIRN	0.04	0.00	14.0	1	
LIBY	0.05	0.00	13.0	1	<u>ן</u>
LICT	0.00	0.00	15.0	\leftrightarrow	- South
LICZ	0.08	0.00	16.0	1	

DETECTION OF WINTER WARM SPELLS

Number of WWS (vertical axis) by (a) duration, expressed in days, and (b) month of occurrence in the winters 1993-2022. Stations are listed in decreasing order of the latitude from left to right.

- Six- and seven-day WWS mainly occurred in central-southern Italy (LIRA, LIRN, LIBY), where they represent about 70% of the total events
- All stations except LIRN and LIBY were subjected to two or three WWS lasting more than nine days
- ◆ December is the month during which up to 50% of recorded WWS occurred (except LIBY)
- In northern and central Italy, WWS have a similar temporal distribution. In southern Italy greater temporal heterogeneity is detectable

TEMPORAL VARIATIONS IN WWS OCCURRENCE

Temporal changes in WWS events fixing the temporal threshold at (a) six, (b) five, (c) four, and (d) three days.

			_		
Station	6 days	5 days	4 days	3 days	
LIPQ	5	11	29	57]
LIPH	7	10	24	50	- North
LIMF	5	15	24	48	
LIRA	11	18	32	60	Control
LIRN	8	15	26	53	
LIBY	10	15	28	48	
LICT	9	13	25	51	- South
LICZ	6	11	26	59	

- As expected, the number of events and WSDIT increase as the time threshold decreases
- During the winter of 2005, no WWS lasting at least 3 days were recorded at any site
- Even by lowering the temporal threshold, only one WWS that involved the whole Italian territory is identified (26-31 December 2022)

CONCLUSIONS AND REMARKS

- During wintertime, TX assume a statistically significant increase in most of the sites selected, showing the highest growth rate in northern and central Italy
- Although exceeding the 90th percentile of TX is quite frequent, only one WWS that affected the entire Italian territory was identified
- WWS are most likely to occur during December

In orographically heterogeneous areas, the ETCCDI definition of WWS allows to capture synoptic scale events, losing information on moderate WWS (lasting at least 3 days).

For the investigation of complex orographic areas, it is suggested to reduce the period length threshold for the identification of winter warm spells to <u>three</u> days.

Thank you for your attention!

annalisa.dibernardino@uniroma1.it

The authors gratefully acknowledge the Iowa Environmental Mesonet (IEM) (https://mesonet.agron.iastate.edu/) for providing the daily maximum temperature data and the Italian airport authorities for collecting the meteorological data. The authors also thank the European Center for Medium-Range Weather Forecasts (ECMWF) for the ERA5 reanalysis dataset.

This research was supported by **BAQUNIN Project** team, funded by ESA through the contract ID 4000126749/19/I-NS. This study was partially supported by **PRIN 2022 project "RESTART"** funded by the Italian Ministry of University and Research (Prot. 2022KZ2AJE).

This study was partially funded by "**Progetti di Ricerca Grandi**" of Sapienza University of Rome (Prot. RG123188AFDE2E0D).

SPATIAL-TEMPORAL VARIATION OF WINTER WARM SPELLS IN ITALY OVER THE PERIOD 1993-2022

RESTA

SYNOPTIC-SCALE CONDITIONS DURING SELECTED WWS

- WWS over Italian peninsula (all the sites selected): 26-31 December 2022 panel (a)
- WWS in Northern Italy (LIPQ, LIPH, LIMF): 13-21 February 1998
- WWS in Central Italy (LIRA, LIRN): 09-14 January 1996
- WWS in Southern Italy (LIBY, LICT, LICZ): 18-23 January 2007

Average ERA5 geopotential heights (black lines) and air temperature (colour shades) at 850 hPa for the selected events. Charts refer to 12:00 UTC.

Quite similar synoptic conditions in all events selected: an anticyclonic system centred on western Mediterranean, or a highpressure promontory might extend from North Africa

panel (b)

panel (c)

panel (d)

- The spatial extension of WWS might be related to the interaction with local circulation and orography.
- The persistence of this synoptic scenario in winter can also favour the development of atmospheric stagnation and the accumulation of atmospheric pollutants near the ground

13