

Simulating the time evolution of weather events in Italy in the framework of climate change

S. Falasca^{1,*}, A. Di Bernardino¹

Department of Physics, Sapienza University of Rome, Rome, Italy

*serena.falasca@uniroma1.it

BACKGROUND

- Climate change is responsible for the intensification of extreme weather events (e.g., floods, heat waves, prolonged periods of drought)
- > The Mediterranean area is a hot spot for the climate change (*Lionello and Scarascia*, 2018)
- > Italy needs site-specific adaptation solutions to climate change due to its orographic variability
- Four "Representative Concentration Pathways (RCP)", characterized by increasing severity, have been proposed by the Intergovernmental Panel on Climate Change (IPCC).

METHODOLOGY

WORKFLOW

Preparation of the numerical setup

- Installation of WRF (v4.4.2)
- Identification of the initial and boundary condition dataset for the simulations
- Identification of calculation domains (Figure I and Table I)
- Definition of the physical configuration of the runs (Table II)

WRF runs

- Test for evaluating the numerical configuration of the model
- Simulations for the year **1997**
- Simulations for the year **2050** based on IPCC RCP4.5 and RCP8.5 scenarios
- Simulations for the year **2100** based on IPCC RCP4.5 and RCP8.5 scenarios

Post-processing

- Computation of summer days (Table III) for the years 1997 and 2100- scenario RPC8.5 in Rome
- Computation of tropical nights (Table III) for the years 1997 and 2100- scenario RPC8.5 in Rome
- Representation of spatial distribution of temperaure at 2 meters over Italy in two of the five cases considered

Table III - Extreme temperature indices (*Fioravanti et al.,* 2016)

Index	Definition	Units
Summer days (SU25)	Annual count of days when daily maximum temperature (TX) >25 °C	Number of days
Tropical nights (TR20)	Annual count of days when daily minimum temperature (TN) >20 °C	Number of days

The Weather Research and Forecasting (WRF) model

Table I – Horizontal resolution and size of the domains					
ID Domai	n	Geographic area	Horizontal resolution [km]	Number of Cells (lon x lat)	
d01		Europe	27	108 x 102	
d02		Italy	9	129 x 141	

Table II – Physics options of WRF runs

Physical category	Selected option	
Planetary Boundary Layer	Assymetric Convective Model Version 2 (ACM2)	
Land-surface	Noah Land-Surface	
Surface-layer	Monin-Obukhov Similarity	
Microphysics	WSM 6-class graupel	
Short wave radiation	RRTM	
Long wave radiation	Dudhia	
Land use dataset	MODIS	

RESULTS

- > The future evolution of the thermo-dynamic fields over Italy is simulated by means of WRF simulation. Extreme temperature indices, such as SU25 and TR20 (Table III) are computed for the city of Rome
- > The increase in SU25 is high especially in winter. In the 2100-RCP8.5 winter such increase reaches almost 80% of the 1997 value
- > The evolution of TR20 suggest a notable rise in the minimum temperatures. In the 2050-RCP4.5 case, the highest number of TR20 is counted, both in summer (130) and in winter (20).

Deferences	Achnouuladaamants
References	ACRITOWIEUgements
 Fioravanti et al., 2016. Recent changes of temperature extremes over Italy: an index-based analysis. Theor A (2016) 123:473–486 DOI 10.1007/s00704-014-1362-1 Lionello, P., & Scarascia, L. (2018). The relation between climate change in the Mediterranean region and glo Regional Environmental Change, 18, 1481-1493 	Appl ClimatolSerena Falasca gratefully acknowledges fellowship funding from MUR (Ministero dell'Università e della Ricerca) under PON "Ricerca e Innovazione" 2014-2020 (D.M. 1062/2021).>bal warming.The computational resources for WRF runs were provided by CINECA. We acknowledge the CINECA award under the ISCRA initiative, for the availability of high-performance computing resources and support.