















# The Boundary-layer Air Quality-analysis Using Network of INstruments Supersite for Atmospheric Research and Satellite Validation

S. Casadio<sup>1,6</sup>, A.M. Iannarelli<sup>1</sup>, A. Di Bernardino<sup>2</sup>, M. Cacciani<sup>2</sup>, M. Campanelli<sup>3</sup>, G. Casasanta<sup>3</sup>, E. Cadau<sup>1</sup>, H. Diémoz<sup>4</sup>, C. Bassani<sup>5</sup>, G. Mevi<sup>1</sup>, A.M. Siani<sup>2</sup>, M. Cardaci<sup>1</sup>, S. Falasca<sup>2</sup>, A. Dehn<sup>6</sup>, P. Goryl<sup>6</sup>

- (1) SERCO Italy, Frascati (RM), Italy
- (2) Sapienza University of Rome, Italy
- (3) CNR-ISAC Tor Vergata, Rome, Italy
- (4) ARPA Valle d'Aosta, Aosta, Italy
- (5) CNR-IIA, Monterotondo (RM), Italy
- (6) EOP-GMQ ESA/ESRIN, Frascati (RM), Italy

Stefano.Casadio@serco.com, Stefano.Casadio@ext.esa.int



The Boundary Layer Air Quality-Analysis Using Network of Instruments (BAQUNIN) Supersite for Atmospheric Research and Satellite Validation over Rome Area

Anna Maria Iannarelli, Annalisa Di Bernardino, Stefano Casadio, Cristiana Bassani, Marco Cacciani, Monica Campanelli, Giampietro Casasanta, Enrico Cadau, Henri Diémoz, Gabriele Mevi, Anna Maria Siani, Massimo Cardaci, Angelika Dehn, and Philippe Goryl





#### **BAQUNIN Mandate**













"The requirements for a good validation strategy are simple: continue acquiring new data, go to the right places, take the right measurements at the right time, accumulate enough data, include validation of ancillary data and facilitate data access."

Richter et al., "Validation strategy for satellite observations of tropospheric reactive gases" ANNALS OF GEOPHYSICS, 56, FAST TRACK-1, 2013; 10.4401/AG-6335, ACVE, 13-15 March 2013

## Boundary-layer Air Quality-analysis Using Network of Instruments

- Sustain the maintenance and operation of ground based remote sensing and in situ instruments for Satellite Cal/Val and Atmospheric Monitoring/Research purposes, operating in the Rome area
- Acquire, homogenise and distribute high quality data
- Perform inter-calibration and validation campaigns
- Attract/engage Space/Research/Health Agencies
- > Stimulate research in Urban Atmospheric Boundary Layer physics and chemistry by facilitating **inter-connections** between national and international research institutes

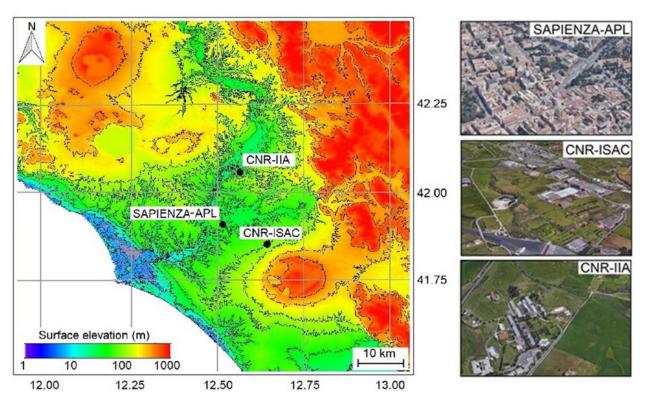




## **BAQUNIN Sites**



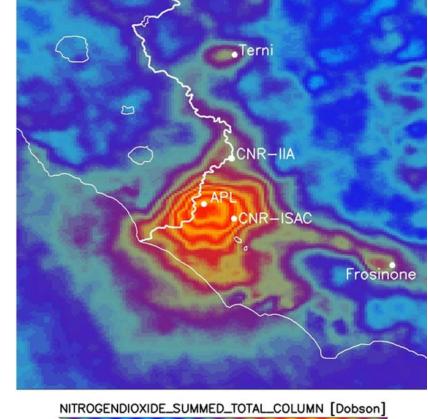


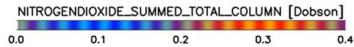










## Boundary-layer Air Quality-analysis Using Network of INstruments




**URBAN** 

**SEMI-RURAL** 

**RURAL** 







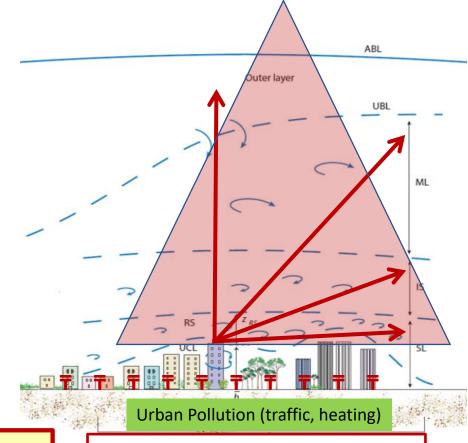


### **BAQUNIN Approach**














- a) Ground based remote sensing instruments "see" upper SL and above. Good time resolution, large air volumes. However the pollution production layer (UCL) is not probed. Clouds can be a limiting factor, some instruments need sunlight.
- **b)** *In situ instruments* are **embedded in the UCL** but can only probe the atmosphere in their proximity. **Low** time resolution, **insufficient** coverage, and **no uncertainties** are limiting factors.
- c) Atmospheric Composition Satellite instruments provide a good 2D description, but are almost insensitive to what happens below the SL (physical limitations). Clouds are a limiting factor, need sunlight.
- <u>d) Modelling</u> provides a good <u>4D</u> <u>description</u>, knowledge of <u>emission</u> sources is a limitation, UBL physics/chemistry too complex, no <u>unpredictable events</u> (e.g. industrial/wild fires)

These techniques are <u>fully complementary</u>
Accurate information on (urban) atmosphere
<u>is obtained from their physically consistent combination</u>



### **Urban Boundary Layer (UBL)**

- Mixed Layer (ML)
- Inertial Sublayer (IS)
- Surface Layer (SL)
  - Roughness Sublayer (RS)
  - Urban Canopy Layer (UCL)

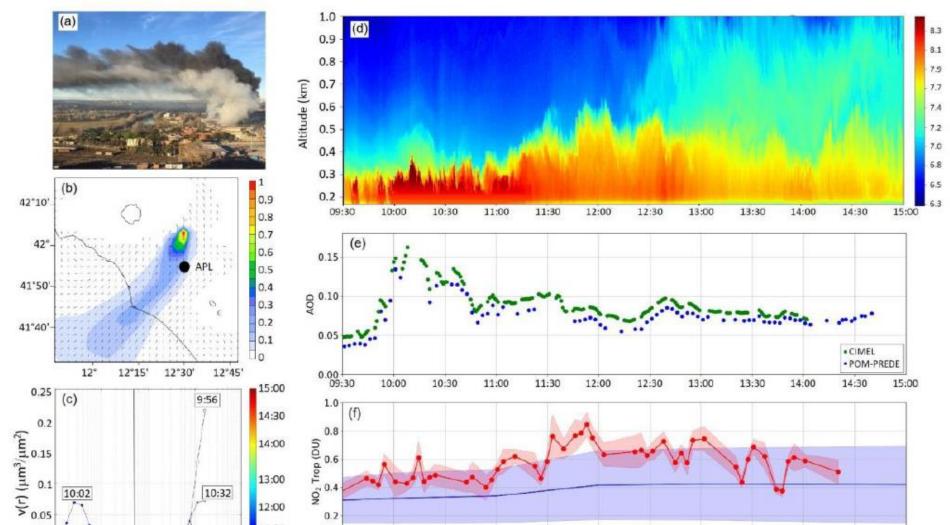
04/07/2022 IRS-2022, Thessalonki 4





## **BAQUNIN Approach**
















10:30

10:00

11:00

11:30

12:00

Smoke plume analysis

- a) Image (drone)
- b) WRF plume simulation
- c) ASD sun-photometers
- d) LIDAR (RCS)
- e) AOD sun-photometers
- f) NO2 PGN

100

r (µm)

10<sup>1</sup>

10-1

10-2

11:00

10:00

102

0.0

Time (UTC)

12:30

13:00

13:30

14:00

15:00

14:30





## **BAQUNIN Suite**













| Instrument                   | Network       | Site     |
|------------------------------|---------------|----------|
| POM-PREDE #11                | SKYNET-EUROPE | APL      |
| POM-PREDE #22                | SKYNET-EUROPE | CNR-ISAC |
| POM-PREDE Lunar              | SKYNET-EUROPE | APL      |
| Air Quality Low Cost         |               | APL      |
| PANDORA #115                 | PGN           | CNR-ISAC |
| PANDORA #117                 | PGN           | APL      |
| PANDORA #138                 | PGN           | CNR-IIA  |
| Pyranometer                  |               | APL      |
| All Sky Camera               |               | APL      |
| MWL-LIDAR                    |               | APL      |
| SODAR                        |               | APL      |
| MFRSR                        |               | APL      |
| BREWER                       | EUBREWNET     | APL      |
| WRF model                    |               | ALL      |
| CIMEL                        | AERONET       | APL      |
| Microbarometer               |               | APL      |
| Meteo Station                |               | APL      |
| All Sky Camera "stereo view" |               | APL      |
| Ceilometer RAP               |               | APL      |
| Ceilometer IIA               |               | CNR-IIA  |

#### **CNR-ISAC "CIRAS"**

- MaxDOAS
- CIMEL
- SODAR

#### **CNR-IIA "Liberti"**

- MaxDOAS
- Meteo Station
- Air Quality in situ





## **BAQUNIN** products













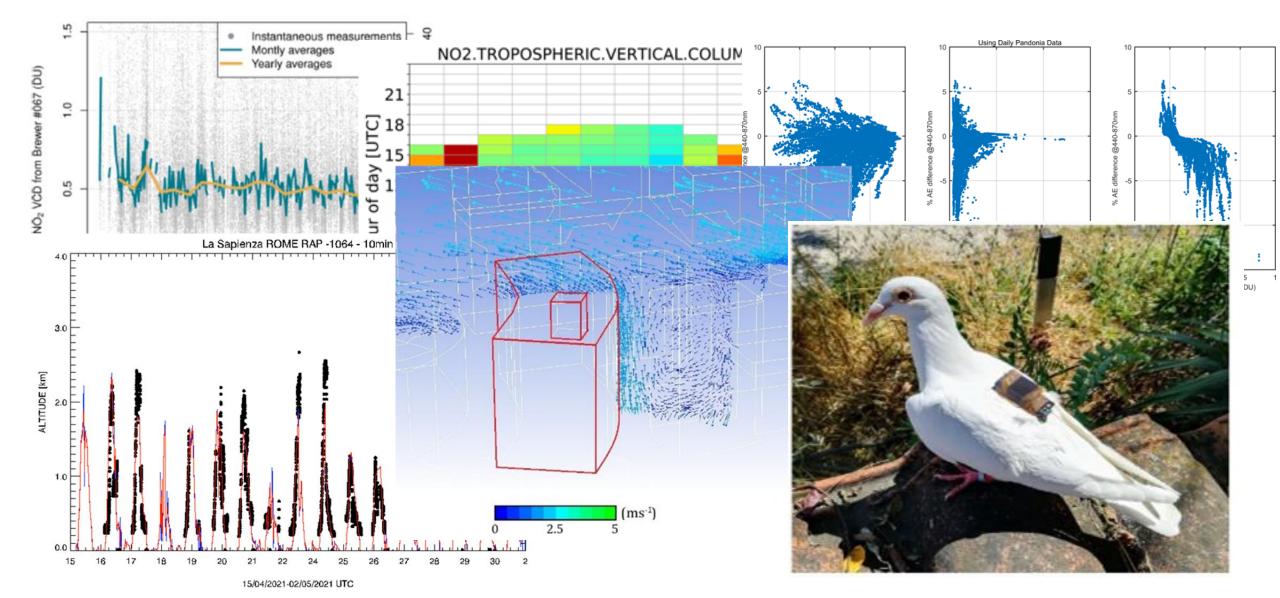
| Product                                    | Instrume | ent                                            | References       |          | Data availa | ability                       |                 |               |                   |  |
|--------------------------------------------|----------|------------------------------------------------|------------------|----------|-------------|-------------------------------|-----------------|---------------|-------------------|--|
| GASES                                      |          |                                                |                  | Product  |             | Instrument                    | References      |               | Data availability |  |
| O <sub>3</sub> TC                          | Brewer   |                                                | Siani et al. 201 | METEO    |             |                               | 1101010100      |               | 2                 |  |
| NO <sub>2</sub> Surf, NO <sub>2</sub> Trop | Pandora- | -2S                                            | Herman et al. 2  | WESTER   |             |                               |                 | -             |                   |  |
| NO <sub>2</sub> TC                         | Brewer   | BAQUNIN (https://www.baqunin.eu)               |                  |          |             |                               |                 | 1. 2019       | 2018-today        |  |
| H <sub>2</sub> O TC                        | Cimel-0  |                                                |                  |          |             |                               |                 |               |                   |  |
| AEROSOL                                    |          |                                                | EVD              | C (https | s://evdd    | c.esa.int)                    |                 | t al. 2021    | 1996-today        |  |
|                                            | Cimel-C  | AEDONET (https://paranat.gsfc.pasa.gov)        |                  |          |             |                               |                 | l .           |                   |  |
| AOD, AE                                    | Prede-I  |                                                |                  |          |             |                               | nd Fiocco       | 2007-2010,    |                   |  |
|                                            | LIDAR    | EUBREWNET (http://www.eubrewnet.org/eubrewnet) |                  |          |             |                               |                 |               | 2017-today        |  |
| AerBack, AerExt                            |          | PGN (https://www.pandonia-global-network.org)  |                  |          |             |                               |                 |               | 2010 4- 1         |  |
| profiles                                   | LIDAR    | `                                              | • • •            |          |             |                               |                 | l .           | 2019-today        |  |
| SAE, AAE                                   | Cimel-C  | SKYNET-EUROPE (www.euroskyrad.net)             |                  |          |             |                               |                 | icala com/sit |                   |  |
| SSA, VSD, Refr.                            | Cimel-C  | E318                                           | Giles et al. 201 |          |             |                               | es/default/file | isala.com/sit |                   |  |
| Index, PF                                  | Prede-P  | OM                                             | Kudo et al. 202  | P        |             | Microbarometer                | PTB200 User     |               | 2020-today        |  |
|                                            | 1        |                                                | nglish.pdf       |          |             |                               |                 |               |                   |  |
|                                            |          |                                                |                  | RI, DP   |             | Meteorological Station<br>SCO | n.a.            |               | 2020-today        |  |





## **BAQUNIN Activities**













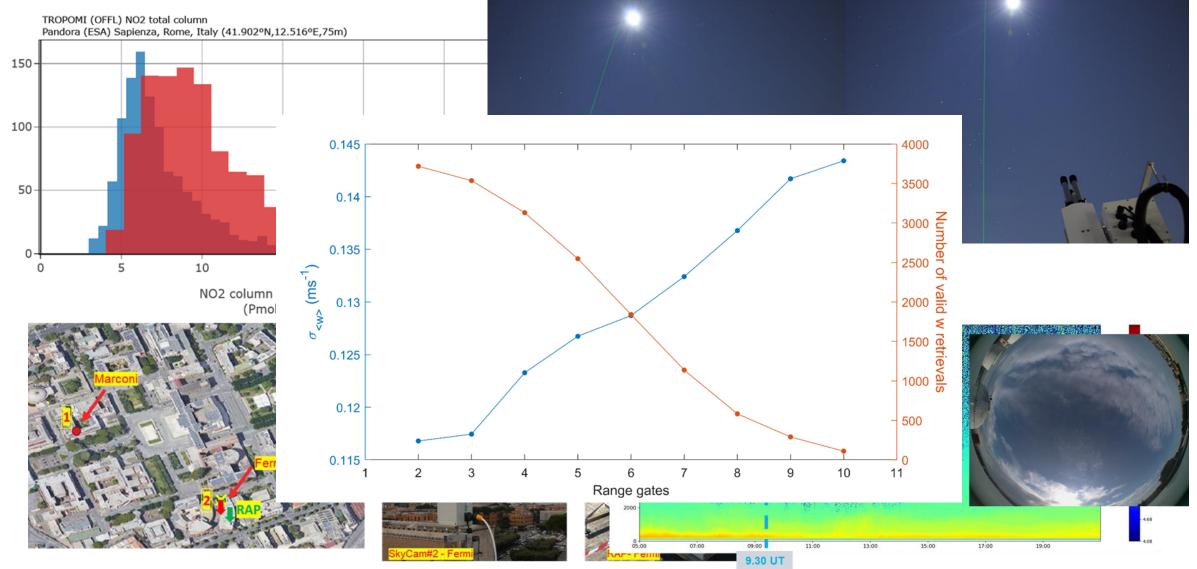







## **BAQUNIN Activities**













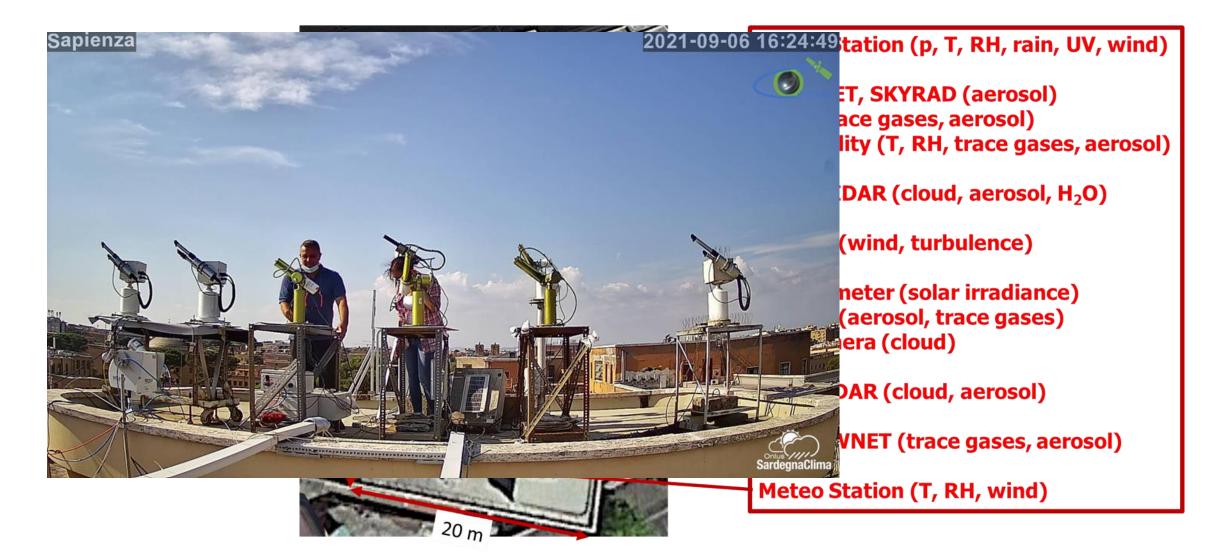







#### **BAQUNIN Activities**




























# **Conclusions**

- Urban (APL), Semi-Rural (CNR-ISAC), Rural (CNR-IIA) components
- Continuous active/passive remote sensing and in situ instrumentation operation
- Data free dissemination to citizen, scientific and Cal/Val communities

## BAQUNIN supersite is suitable for:

- > Testing new instruments and operation modes
- > Hosting long-term inter-calibration/comparison campaigns
- > Education initiatives (e.g. summer schools): hands on instruments!

### Next to come:

- ☐ Daytime total Column GHG EM27SUN (from KIT)
- ☐ Night-time NO2 (NO3) DIAL (custom)
- ☐ Air-quality in situ (from ENEA and CNR-IIA)















# Looking forward building up new fruitful collaborations!

## **BAQUNIN** contact points:

Massimo Cardaci (Contract Manager) <u>Massimo.Cardaci@serco.com</u> Anna Maria Iannarelli (Scientific Coordinator) <u>Annamaria.Iannarelli@serco.com</u> Stefano Casadio (Senior Scientist) <u>Stefano.Casadio@serco.com</u>

https://www.baqunin.eu/

















esa



13 June 1931 – 31 July 2012

## Prof Marco Cacciani



16 August 1959 – 18 January 2022