
Lesson 7:
RADIATIVE TRANSFER - INTRODUCTION

Course: Laboratory of Atmospheric Remote Sensing
Laurea Magistrale in Atmospheric Science and Technology



• Radiative transfer: definition, climatic effects

• Electromagnetic spectrum

• Solid angle, solid angle in hemispherical surface, solid angle in

spherical surface

• Radiative variables: radiance, irradiance, flux

• Blackbody: definition, characteristics

• Blackbody radiation laws: Plank’s law, Stefan-Boltzmann law,

Wien’s Displacement law, Kirchhoff’s law

Reading material:
▪ Liou K. N., An introduction to atmospheric radiation. Chps. 1-2.
▪ Wallace J.M and Hobbs P.V., Atmospheric Science: An

Introduction survey. Chpt. 4.

Content



Radiative transfer is the physical phenomenon of energy transfer
in the form of electromagnetic radiation due to the interaction of
the solar electromagnetic radiation with molecules and aerosols
present in planetary atmosphere.
The propagation of radiation through a medium is affected by
absorption, emission, and scattering processes.

The radiative transfer affects:
- Cooling/heating of the atmosphere
- Climate
- Atmosphere composition
- Remote sensing
- Atmospheric greenhouse effects
- Observation techniques

What is the radiative transfer?



DEFINITIONS:

▪ Wavelenght λ [L] (cm, mm, μm, nm)

▪ Frequency ෤𝑣 =
𝑐

𝜆
[t]-1 (s-1 , Hz) c=2.998x108 ms-1

▪ Wavenumber 𝑣 =
෤𝑣

𝑐
=

1

𝜆
[L] -1 (m-1)

▪ Period 𝑇 =
1

෤𝑣
=

λ
𝑐

[t] (s)

▪ Angular velocity 𝜔 = 2𝜋 ෤𝑣 =
2𝜋

𝜆
𝑐 [rad s-1]

Electromagnetic spectrum

SOLAR 
RADIATION

TERRESTRIAL 
RADIATION



A solid angle Ω is defined as the ratio of the area σ of a spherical
surface intercepted at the core to the square of the radius, r.

Solid angle (1)

Ω =
𝜎

𝑟2
[𝑠𝑟]

For spherical surfaces ⟶ Ω = 4𝜋 𝑠𝑟

Differential elemental solid angle ⟶ sphere centered on point
denoted O.



Solid angle (2)

𝑑Ω =
𝑑𝜎

𝑟2
= 𝑠𝑖𝑛𝜃 𝑑𝜃 𝑑𝜙

Differential elemental solid angle ⟶ sphere centered on point
denoted O.

Digitare l'equazione qui.

𝑑𝜎 = (𝑟𝑑𝜃)(𝑟 𝑠𝑖𝑛𝜃 𝑑𝜙)

𝜃 = zenith angle in polar coordinates
𝜙 = azimuth angle in polar coordinates



Solid angle in hemispherical surface (Ss)

𝑠𝑖𝑛𝜃𝑑𝜃 = −𝑑(𝑐𝑜𝑠𝜃)

𝑆ℎ = −2𝜋𝑟2න
1

0

𝑑(𝑐𝑜𝑠𝜃) = 2𝜋𝑟2

Ωℎ =
𝑆ℎ
𝑟2

= 2𝜋

The hemispherical surface can be calculated by integrating θ from 

0 to 
π

2
and ϕ from 0 to 2π

𝜃 = 0 ÷
𝜋

2
𝜙 = 0 ÷2𝜋

𝑆ℎ = න
𝐸𝑚

𝑑𝜎 = න
0

2𝜋

𝑑𝜙න
0

ൗ𝜋 2
𝑟2𝑠𝑖𝑛𝜃𝑑𝜃 = 2𝜋𝑟2න

0

ൗ𝜋 2
𝑠𝑖𝑛𝜃𝑑𝜃



Solid angle in spherical surface (Sh)

𝑠𝑖𝑛𝜃𝑑𝜃 = −𝑑(𝑐𝑜𝑠𝜃)

𝑆𝑠 = −2𝜋𝑟2න
1

−1

𝑑(𝑐𝑜𝑠𝜃) = 4𝜋𝑟2

Ω𝑠 =
𝑆𝑆
𝑟2

= 4𝜋

The hemispherical surface can be calculated by integrating 
θ from 0 to π and ϕ from 0 to 2π

𝜃 = 0 ÷ 𝜋
𝜙 = 0 ÷ 2𝜋

𝑆𝑠 = න
𝑆𝑓

𝑑𝜎 = න
0

2𝜋

𝑑𝜙න
0

𝜋

𝑟2𝑠𝑖𝑛𝜃𝑑𝜃 = 2𝜋𝑟2න
0

𝜋

𝑠𝑖𝑛𝜃𝑑𝜃



Radiative variables

Let's introduce some radiative variables of atmospheric interest.
All variables are dependent on the wavelength and therefore are
defined per unit of spectral interval [L]-1. To indicate this
prerogative, the adjective "spectral" is added to their name and
the inverse of a unit of length (μm-1, cm-1) to the unit of
measurement. Sometimes the dependence in wavelength is
transformed into wave number or frequency and consequently the
units of measurement are changed.
In the definitions and use we consider them integrated over the
entire electromagnetic spectrum and therefore independent of the
wavelength, unless otherwise specified.

Radiative energy 𝐸𝜆 [J]

Time interval 𝑑𝑡 [s]

Area 𝑑𝐴 [m2]



Radiative variables: Radiance

Radiance or intensity (I) (Wm-2sr-1)
The amount of energy that
1. crosses an infinitesimal area from dA⊥ perpendicular to the
direction of propagation
2. coming from directions contained within a solid angle dΩ around
the direction Ω = (𝜃, 𝜙)
3. in a time dt
It will be proportional to 𝑑2𝐸 = 𝐼 𝜃, 𝜙, 𝑡 𝑑𝐴⊥𝑑Ω𝑑𝑡

𝐼 𝜃, 𝜙, 𝑡 is called radiance or intensity and is equal to radiant energy
that crosses a unit area perpendicular to the direction 𝐼 𝜃, 𝜙 in the
unit of time per unit of solid angle.

𝐼 𝜃, 𝜙, 𝑡 =
𝑑2𝐸

𝑑𝐴⊥𝑑Ω𝑑𝑡

The orientation of the surface with respect to
the direction of propagation depends only on
the zenith angle and the relationship between
the effective area and the perpendicular portion
is

𝑑𝐴⊥ = 𝑐𝑜𝑠𝜃𝑑𝐴



Radiative variables: Radiance

So

𝐼 𝜃, 𝜙, 𝑡 =
𝑑2𝐸

𝑐𝑜𝑠𝜃𝑑𝐴 𝑑Ω𝑑𝑡

The dimensions of the radiance are [E][L]-2[t]-1. The units of
measurement [E][t] -1 are collected in a power; the unit of solid
angle (which would be dimensionless) is explicitly indicated.
Hence the radiance is expressed in (W m-2 sr-1).
The spectral radiance ( 𝐼𝜆 , radiance per unit of wavelength
interval) is expressed in (W m-2 sr-1 μm-1). A sub-multiple of the
meter is used to avoid having to deal with very small values.



Radiative variables: Irradiance

Irradiance or flux density (W m-2)
Radiant energy that passes in the unit of time through a unit area
coming from all directions of a hemisphere. It is obtained by
integrating the radiance over a solid angle of 2π.
The contribution of the radiance coming from a zenith angle θ
must be weighted by cosθ to take into account the inclination with
respect to the surface, and multiplied by the angle solid dΩ.

dF t = I θ, 𝜙, 𝑡 𝑐𝑜𝑠𝜃𝑑Ω
= I θ, 𝜙, 𝑡 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙

𝐹 𝑡 = න
0

𝜋
2
න
0

2𝜋

𝐼(𝜗, 𝜓, 𝑡) 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙

If the radiance is isotropic, that is, it does not depend on the
direction of origin:

𝐹 𝑡 = න
0

𝜋
2
න
0

2𝜋

𝐼(𝑡) 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙 = 2𝜋𝐼 𝑡 න
0

𝜋
2
𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑑𝜃

= 2𝜋𝐼 𝑡 න
0

1

𝑠𝑖𝑛𝜃𝑑𝜃 = 𝜋𝐼 𝑡



Radiative variables: Irradiance

If the radiance is collimated, i.e. all the rays come from the same
direction (θ0,ϕ0) as can be approximated the case of solar
radiation that affects the Earth.

𝐼 𝜃, 𝜓, 𝑡 = 𝐼⊙(𝑡)𝛿(𝜃 − 𝜃0)𝛿(𝜙 − 𝜙0)

In this case (θ0,ϕ0) are the zenith and azimuth angles of the sun, δ
is the Dirac delta and 𝐼⊙(𝑡) is the solar radiance incident

perpendicular to the earth's surface at time t.

𝐹 𝑡 ⊙ = න
0

𝜋
2
න
0

2𝜋

𝐼⊙(𝑡)𝛿(𝜃 − 𝜃0)𝛿(𝜙 − 𝜙0) 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙

= 𝐼⊙(𝑡)න
0

𝜋
2
𝛿(𝜃 − 𝜃0)𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑑𝜃න

0

2𝜋

𝛿(𝜙 − 𝜙0) 𝑑𝜙



Radiative variables: Irradiance

𝐹 𝑡 ⊙ = න
0

𝜋
2
න
0

2𝜋

𝐼⊙(𝑡)𝛿(𝜃 − 𝜃0)𝛿(𝜙 − 𝜙0) 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙

= 𝐼⊙(𝑡)න
0

𝜋
2
𝛿(𝜃 − 𝜃0)𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑑𝜃න

0

2𝜋

𝛿(𝜙 − 𝜙0) 𝑑𝜙

The two integrals are notable integrals that yield the results

න
0

𝜋
2
𝛿 𝜃 − 𝜃0 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑑𝜃 = 𝑐𝑜𝑠𝜃0

න
0

2𝜋

𝛿(𝜙 − 𝜙0) 𝑑𝜙 = 1

So the solar irradiance (collimated radiation) is equal to the solar
radiation multiplied for the cosine of the solar zenith angle
(𝑐𝑜𝑠𝜃0); often the cosine of the zenith angle is indicated with 𝜇0.

𝐹 𝑡 ⊙ = 𝐼⊙ 𝑡 𝑐𝑜𝑠𝜃0 = 𝜇0𝐼⊙ 𝑡



Radiative variables: Flux

Radiant energy that passes in the unit of time through area A
coming from all directions of a hemisphere. It is obtained by
integrating the irradiance on area A

𝑓 𝑡 = න
𝐴

𝐹 𝑡 𝑑𝐴



Blackbody

Configuration of material with complete absorption and maximum 
emission at a certain temperature.

Can be described as a cavity with a small entrance hole in which
most of the radiant flux entering this hole from the outside will be
trapped within the cavity, regardless of the material and surface
characteristics of the wall. The probability that any of the entering
flux will escape back through the hole is so small that the interior
appears dark.



Blackbody radiation laws

1) Plank’s law
The Planck function relates the emitted monochromatic intensity
to the frequency and the temperature of the emitting substance.
The blackbody radiant intensity increases with temperature, while
the wavelength of the maximum intensity decreases with
increasing temperature.
The spectral radiance emitted by a black body is isotropic (does
not depend on the direction) and is expressed by Plank's law:

𝐵𝜆 𝑇 =
2ℎ𝑐2

𝜆5(𝑒 Τℎ𝑐 𝐾𝜆𝑇 − 1)
=

𝐶1𝜆
−5

𝜋(𝑒 Τ𝐶2 𝜆𝑇 − 1)

T = absolute temperature
c = speed of light
h = Plank constant = 6,626 x 10-34 J sec
K = Boltzmann constant = 1,3806 x 10-23 J deg-1

𝐶1 = 2𝜋ℎ𝑐2

𝐶2 = ℎ𝑐/K



Blackbody radiation laws



Blackbody radiation laws

2) Stefan-Boltzmann law
The total radiant intensity of a blackbody can be derived by
integrating the Planck function over the entire wavelength domain
from 0 to ∞.
The flux density emitted by a blackbody is proportional to the
fourth power of the absolute temperature.

𝐵 𝑇 = න
0

∞

𝐵𝜆 𝑇 𝑑𝜆 = න
0

∞ 2ℎ𝑐2𝜆−5

(𝑒 Τℎ𝑐 𝐾𝜆𝑇 − 1)
𝑑𝜆 = 𝜎𝑇4

where

𝜎 =
2𝜋4𝐾4

15𝑐3ℎ3

Since blackbody radiation is isotropic, the flux density emitted by
a blackbody is:

𝐹 = 𝜋𝐵 𝑇 = 𝜎𝑇4

where
𝜎 = Stefan-Boltzmann constant = 5.67x 10−8 J m−2sec−1deg−4



Blackbody radiation laws

3) Wien’s Displacement Law
The wavelength of the maximum intensity of blackbody radiation
is inversely proportional to the temperature.
From this relationship, we can determine the temperature of a
blackbody from the measurement of the maximum
monochromatic intensity. The wavelength at which the black body
emits at maximum radiance is obtained by canceling the derivative
of the Plank function. The solution is called Wien’s Law:

𝜕𝐵𝜆 𝑇

𝜕𝜆
= 0 → 𝜆𝑚𝑎𝑥(𝑇) =

𝑎

𝑇

a = 2.897 x 10−3 m K-1

Since the Sun and the
Earth are at very different
temperatures, the
emission spectra are
almost completely
separate.



Blackbody radiation laws

4) Kirchhoff’s Law
Since the blackbody absorbs the maximum possible radiation, it
has to emit that same amount of radiation. If it emitted more,
equilibrium would not be possible, and this would violate the
second law of thermodynamics.
The emissivity of a given wavelength, 𝜀𝜆 (defined as the ratio of
the emitting intensity to the Planck function), of a medium is
equal to the absorptivity, 𝐴𝜆 (defined as the ratio of the absorbed
intensity to the Planck function), of that medium under
thermodynamic equilibrium.

𝜀𝜆 = 𝐴𝜆

For a blackbody absorption is a maximum and so is emission:

𝜀𝜆 = 𝐴𝜆 = 1

For a grey body:

𝐴𝜆 = 𝜀𝜆 < 1


