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Content

• Equation of Radiative Transfer: definition, extinction, emission

and scattering, general radiative transfer equation without any

coordinate system imposed

• Beer–Lambert law

• Transmissivity and absorptivity, optical thickness

• Schwarzschild’s equation

• Plane-parallel atmosphere: definition, applications, radiative

transfer equation for plane-parallel atmosphere

• Upward radiation at the TOA and at the surface

Reading material:

- Liou K. N., An introduction to atmospheric radiation. Chps.
1-2.
- Wallace J.M and Hobbs P.V., Atmospheric Science: An
Introduction survey. Chpt. 4.



Equation of Radiative Transfer (1)

It describes the variations that a band of electromagnetic
radiation that propagates through the atmosphere.
The scattering and absorption of radiation by gas molecules and
aerosols contribute to the extinction of the solar and terrestrial
radiation depending on:
▪ the intensity of the radiation at that point along the ray path
▪ the local concentration of the gases and/or particles that are

responsible for the absorption and scattering
▪ the effectiveness of the absorbers or scatterers
If the radiation is monochromatic and the atmosphere is
absorbing and diffusing at that wavelength, the bundle will
undergo a variation in dIλ crossing an infinitesimal layer
proportional to the incoming radiance and the amount of matter
crossed.

Interaction radiation – layer of atmosphere

Reduction (extinction) ⇒ 𝑑𝐼𝜆 < 0
Increasing (emission + scattering) ⇒ 𝑑𝐼𝜆 > 0



Equation of Radiative Transfer (2)

If the radiation is monochromatic and the atmosphere is absorbing
and diffusing at that wavelength, the bundle will undergo a variation
in dIλ crossing an infinitesimal layer proportional to the incoming
radiance and the amount of matter crossed.
The radiance of the bundle will also have an increase due to the
emission of the infinitesimal layer, which will be proportional to the
amount of matter.

𝑑𝐼𝜆 = −෨𝑘𝜆𝐼𝜆𝑑𝑀 + ǁ𝑗𝜆𝑑𝑀

𝑑𝐼𝜆 ∝ 𝑑𝑀

𝜌 = density of the material
𝑘𝜆 = mass extinction cross section (in units of
area per mass) for radiation of wavelength λ
𝑀 = mass of particles
A = areal cross section of each particle



Equation of Radiative Transfer (3)

Suppose that the layer crossed by the radiation strip is thick dS and
area A

We can define 𝑘𝜆 = ෨𝑘𝜆𝐴 and 𝑗𝜆 = ǁ𝑗𝜆𝐴

𝑘𝜆𝜌𝑑𝑠 = 1 ⇒ 𝑘𝜆 =
1

𝜌𝑑𝑠
=

𝐿3

𝑀

1

𝐿
=

𝐿2

𝑀

𝑑𝐼𝜆 = −𝑘𝜆𝜌𝐼𝜆𝑑𝑆 + 𝑗𝜆𝜌𝑑𝑆 = −𝑘𝜆𝐼𝜆 + 𝑗𝜆 𝜌𝑑𝑆 = (−𝐼𝜆 +
𝑗𝜆

𝑘𝜆
)𝑘𝜆𝜌𝑑𝑆

We can define the source function as

𝐽𝑘 =
𝑗𝜆
𝑘𝜆

𝑑𝐼𝜆 = −෨𝑘𝜆𝜌𝐴𝐼𝜆𝑑𝑆 = −𝑘𝜆𝜌𝐼𝜆𝑑𝑠

𝑑𝑀 = 𝜌𝑑𝑉 = 𝜌𝐴𝑑𝑆



Equation of Radiative Transfer (4)

𝑑𝐼𝜆 = (−𝐼𝜆 + 𝐽𝜆)𝑘𝜆𝜌𝑑𝑆

𝑑𝐼𝜆
𝑘𝜆𝜌𝑑𝑠

= −𝐼𝜆 + 𝐽𝜆

General radiative transfer equation without any coordinate 
system imposed

In atmospheric conditions, both emission and scattering contribute
to the source function.



Equation of Radiative Transfer (5)

The general equation of radiative transfer describes the variation
that the radiance undergoes crossing a layer of the atmosphere of
thickness ds.
To know the radiance that comes out of a layer of finite thickness
s1 it is necessary to integrate the equation from point 0 to point s1

knowing the variance at the entrance to the layer.



To study the problem we start from the particular case in which
the source function is null.
This is the case in which we are looking directly at the Sun at short
wavelengths, so the contribution of atmospheric emission is zero
and that of diffusion negligible. The equation becomes

Considering solar radiation (wavelengths from about 0.2 to 5 μm):

➢ Emission contributions from the earth–atmosphere system can
be generally neglected

➢ Diffuse radiation produced by multiple scattering can be
neglected

𝑑𝐼𝜆
𝑘𝜆𝜌𝑑𝑠

= −𝐼𝜆𝐽𝜆 = 0

𝑑𝐼𝜆
𝐼𝜆

= −𝑘𝜆𝜌𝑑𝑠

Beer–Lambert Law (1)



Beer–Lambert Law (2)

න
𝐼𝜆(0)

𝐼𝜆(𝑠)

𝑑 𝑙𝑛𝐼𝜆 = −න
0

𝑠

𝑘𝜆(𝑠
′)𝜌(𝑠′)𝑑𝑠′

𝑙𝑛
𝐼𝜆(𝑠)

𝐼𝜆(0)
= −න

0

𝑠

𝑘𝜆(𝑠
′)𝜌(𝑠′)𝑑𝑠′

𝐼𝜆 𝑠 = 𝐼𝜆 0 exp −න
0

𝑠

𝑘𝜆(𝑠
′)𝜌(𝑠′)𝑑𝑠′

Let the incident intensity at s = 0 be 𝐼𝜆(0) and integrate between 0 
and a generic point s

Beer–Lambert 
Law



Considering:

➢ homogeneous medium
➢ 𝑘𝜆 𝑠 = 𝑘𝜆 i.e. independent of the distance s
And writing

where u(s) is the path length

The Beer-Lambert law can be rewriteen as

𝐼𝜆 𝑠 = 𝐼𝜆 0 𝑒−𝑘𝜆𝑢(𝑠)

The decrease in the radiant intensity traversing a
homogeneous extinction medium is in accord with the simple
exponential function whose argument is the product of the
mass extinction cross section and the path length.

u(𝑠) = න
0

𝑠1

𝜌(𝑠′)𝑑𝑠′

Beer-Lambert Law

Beer–Lambert Law (3)



Transmissivity and absorptivity

𝑇𝜆 =
𝐼𝜆 𝑠

𝐼𝜆 0
= 𝑒−𝑘𝜆𝑢(𝑠) Monochromatic Transmissivity

𝐴𝜆 = 1 − 𝑇𝜆 = 1 − 𝑒−𝑘𝜆𝑢(𝑠) Monochromatic Absorptivity
(for nonscattering medium)

We can define the Monochromatic Reflectivity 𝑅𝜆, which is the
ratio of the reflected (backscattered) intensity to the incident
intensity.
On the basis of the conservation of energy, we must have:

𝑇𝜆 + 𝐴𝜆 + 𝑅𝜆 = 1

for the transfer of radiation through a scattering and absorbing
medium.



Optical thickness

𝜏𝜆 = monochromatic
optical thickness of the
medium between points
s and s1𝜏𝜆 𝑠1, 𝑠1 = 0

𝜏𝜆 0, 𝑠1 = 𝜏𝜆 𝑠1 = න
0

𝑠1

𝑘𝜆𝜌𝑑𝑠′

𝜏𝜆 𝑠 = න
𝑠

𝑠1

𝑘𝜆𝜌𝑑𝑠′ = −න
𝑠1

𝑠

𝑘𝜆𝜌𝑑𝑠′

𝑑𝜏𝜆 𝑠1, 𝑠 = −𝑘𝜆𝜌𝑑𝑠

The radiative transfer equation, and its approximation with the 
Beer-Lambert law, is generally expressed as a function of a new 
variable, the optical thickness:

𝜏𝜆 𝑠1, 𝑠 = න
𝑠

𝑠1

𝑘𝜆𝜌𝑑𝑠′

The optical thickness collects the effect of the extinction of the
radiation of the layer that goes from the generic point s to the
extreme 𝑠1 of the layer along the direction of propagation.
𝜏𝜆 decreases as s increases and its infinitesimal variation is
opposite to ds.



Schwarzschild’s Equation (1)

We get Beer's Lambert law using optical thickness instead of s

𝑑𝐼𝜆 = −𝐼𝜆𝑘𝜆𝜌𝑑𝑠 = 𝐼𝜆𝑑𝜏𝜆
𝑑𝐼𝜆
𝐼𝜆

= 𝑑𝜏𝜆

න
𝐼𝜆(0)

𝐼𝜆(𝑠)

𝑑𝑙𝑛𝐼𝜆 = න
𝜏𝜆(0)

𝜏𝜆(𝑠)

𝑑𝜏𝜆 = −(𝜏𝜆 0 − 𝜏𝜆 𝑠 )

𝐼𝜆 𝑠 = 𝐼𝜆 0 𝑒𝑥𝑝 −(𝜏𝜆 0 − 𝜏𝜆 𝑠 )

The argument of the exponential is the difference between the
total optical thickness of the layer and the optical thickness
between the point s and the end of the layer, i.e. the optical
thickness from 0 to s.
The optical thickness is used instead of the spatial coordinate in
the law of radiative transfer

𝑑𝐼𝜆
𝑘𝜆𝜌𝑑𝑠

= −𝐼𝜆 + 𝐽𝜆 −
𝑑𝐼𝜆
𝑑𝜏𝜆

= −𝐼𝜆(𝜏𝜆) + 𝐽𝜆(𝜏𝜆)

The radiance and the source term are computed in 𝜏𝜆 instead of s



Schwarzschild’s Equation (2)

Now let's study the case in which the source function contributes
only the emission and not the scattering with monochromatic
radiation and in local thermodynamic equilibrium.

Ipothesis: only molecules (no scattering)

𝑘𝜆= absorption coefficient
𝑇𝐵= Brilliance temperature that is the temperature at which the
atmosphere must be in the point 𝜏 to emit as a black body.

The source function is given by the Planck function and can be
expressed by:

To simplify the notation we drop the subscript 𝜆.

The first term in the right-hand denotes the reduction of the radiant
intensity due to absorption, whereas the second term represents
the increase in the radiant intensity arising from blackbody emission
of the material.

𝐽𝜆 = 𝐵𝜆 𝑇

−
𝑑𝐼𝜆
𝑑𝜏𝜆

= −𝐼𝜆(𝜏𝜆) + 𝐵𝜆 𝑇𝐵(𝜏𝜆) −
𝑑𝐼

𝑑𝜏
= −𝐼(𝜏) + 𝐵[𝑇𝐵(𝜏)]



Schwarzschild’s Solution (3)

Multiplying by a factor 𝑒−𝜏𝑑𝜏:

−𝑑𝐼𝑒−𝜏 = −𝐼(𝜏)𝑒−𝜏𝑑𝜏 + 𝐵[𝑇𝐵(𝜏)]𝑒
−𝜏𝑑𝜏

−𝑑𝐼𝑒−𝜏 + 𝐼 𝜏 𝑒−𝜏𝑑𝜏 = 𝐵[𝑇𝐵(𝜏)]𝑒
−𝜏𝑑𝜏

The two terms to the left of the equal can be collected in a single 
differential since

𝑑 𝐼𝑒−𝜏 = 𝑑𝐼𝑒−𝜏 − 𝐼 𝜏 𝑒−𝜏𝑑𝜏

−𝑑 𝐼𝑒−𝜏 = 𝐵[𝑇𝐵(𝜏)]𝑒
−𝜏𝑑𝜏

−
𝑑𝐼

𝑑𝜏
= −𝐼(𝜏) + 𝐵[𝑇𝐵(𝜏)]



Schwarzschild’s Solution (4)

Integrating the thickness ds from 0 to 𝑠1.

The integration limits of the integral on the left of the equal are

𝐼 0 𝑒−𝜏 0,𝑠1 = 𝐼 0 𝑒−𝜏 𝑠1 and      𝐼 𝑠1 𝑒−𝜏 𝑠1,𝑠1 = 𝐼(𝑠1)

The integration limits of the integral on the right of the equal are

𝜏 0, 𝑠1 = 𝜏 𝑠1 and     𝜏 𝑠1, 𝑠1 = 0

׬−
𝐼 0 𝑒−𝜏 𝑠1

𝐼(𝑠1)
𝑑 𝐼𝑒−𝜏 = 𝜏׬ 𝑠1

0
𝐵𝜆 𝑇𝐵 𝜏 𝑒−𝜏𝑑𝜏

𝐼 𝑠1 = 𝐼(0)𝑒−𝜏(𝑠1) +න
0

𝜏(𝑠1)

𝐵𝜆[𝑇𝐵 𝜏 ]𝑒−𝜏𝑑𝜏
Schwarzschild’s
Equation



Schwarzschild’s Solution (5)

➢ The first term represents the absorption attenuation of the
radiant intensity by the medium.

➢ The second term denotes the emission contribution from the
medium along the path from 0 to 𝑠1.

If the temperature and density of the medium and the associated
absorption coefficient along the path of the beam are known, the
Schwarzschild’s Equation can be integrated numerically to yield
the intensity at the point 𝑠1.

𝐼 𝑠1 = 𝐼(0)𝑒−𝜏(𝑠1) +න
0

𝜏(𝑠1)

𝐵𝜆[𝑇𝐵 𝜏 ]𝑒−𝜏𝑑𝜏



Fundamental equations

1. Solar spectrum without multiple scattering: 

Beer-Lambert Equation

2.   Terrestrial spectrum – only molecules:

Schwarzschild’s Equation

𝐼𝜆 𝑠 = 𝐼𝜆 0 exp −න
0

𝑠

𝑘𝜆𝜌𝑑𝑠

𝐼 𝑠1 = 𝐼(0)𝑒−𝜏(𝑠1) +න
0

𝜏(𝑠1)

𝐵𝜆[𝑇𝐵 𝜏 ]𝑒−𝜏𝑑𝜏



Plane-Parallel Atmosphere (1)

For many atmospheric radiative transfer applications, it is
physically appropriate to consider that the atmosphere in localized
portions is plane-parallel such that variations in the intensity and
atmospheric parameters (temperature and gaseous profiles) are
permitted only in the vertical direction (i.e., height and pressure).

It is frequently used to avoid the computational complications
related to the sphericity of the Earth and the horizontal variations
of the parameters. It is suitable for scenarios where the horizontal
dimensions are smaller than the vertical ones.

In this case, it is convenient to measure linear distances normal to
the plane of stratification.

It involves that each variable
depends only on z.
It means that the atmosphere is
horizontally homogeneous and
isotropic.
In this case, the path of the
radiation can be projected onto the
vertical axis using the zenith angle.



Plane-Parallel Atmosphere (2)

𝜃 = inclination to the upward normal
𝜙 = azimuthal angle in reference to the x axis
𝜇 ≡ 𝑐𝑜𝑠𝜃

Upward radiation: 0 ≤ 𝜙 ≤ 2𝜋 and 0 ≤ 𝜃 ≤
𝜋

2
and μ≥0

Downward radiation: 0 ≤ 𝜙 ≤ 2𝜋 and
𝜋

2
≤ 𝜃 ≤ 𝜋 and μ≤0

𝑓 x, y, z = 𝑓(z)
𝑘𝜆 x, y, z = 𝑘𝜆(z)

𝑑𝑧 = 𝑐𝑜𝑠𝜃𝑑𝑠 = 𝜇𝑑z‘= 𝜇𝑑s



Plane-Parallel Atmosphere (2)

𝑐𝑜𝑠𝜃
𝑑𝐼(𝑧; 𝜃, 𝜙)

𝑘𝜌𝑑𝑠
= −𝐼(𝑧; 𝜃, 𝜙) + 𝐽(𝑧; 𝜃, 𝜙)

Introducing the normal optical thickness 𝝉, measured downward
from the outer boundary (TOA):

𝜏 = න
𝑧

∞

𝑘(𝑧′)𝜌(𝑧′)𝑑𝑧′

We can rewrite the equation of the radiative transfer as

𝜇
𝑑𝐼(𝜏; 𝜇, 𝜙)

𝑑𝜏
= 𝐼 𝜏; 𝜇, 𝜙 − 𝐽(𝜏; 𝜇, 𝜙)

Radiative transfer equation 
for plane-parallel atmosphere 



Solution for the Plane-Parallel Equation (1)

This equation can be formally solved by separating it into two
components:
- one for the radiances directed upwards in which μ > 0
- one for the radiances downwards in which μ < 0
The optical thickness value will vary between that at the TOA,
which is zero, and that at the surface (τ*)



Solution for the Plane-Parallel Equation (2)

θ variation limited between 0 and Τπ 2 (so μ > 0)

In the equation for the downward radiation change μ in – μ. 

−μ
dI τ; μ, ϕ

dτ
= −I τ; μ, ϕ + J(τ; μ, ϕ)

μ
dI τ; −μ, ϕ

dτ
= I τ; −μ, ϕ − J(τ;−μ, ϕ)

Can be solved to give the upward and downward intensities for a
finite atmosphere that is bounded on two sides at τ =0 and τ= τ* as
illustrated in the figure given in the previous slide.

(↑) 

(↓)



Solution for the Plane-Parallel Equation (3)

Let’s multiply the equation (↑) by a factor 𝑒− Τ𝜏 𝜇𝑑( Τ𝜏 𝜇)

and the equation (↓) by a factor 𝑒 Τ𝜏 𝜇𝑑( Τ𝜏 𝜇)



Solution for the Plane-Parallel Equation (4)

Let’s integrate the equation (↑) from the surface (τ*) up to a
generic level τ and the equation (↓) from the TOA (τ=0) down to a
generic level τ



Solution for the Plane-Parallel Equation (5)

Let’s multiply the equation (↑) by a factor 𝑒𝜏/𝜇

and the equation (↓) by a factor 𝑒−𝜏/𝜇



Solution for the Plane-Parallel Equation (6)

The radiance that arrives at the level τ from below is given by
1. Incoming from the surface, reduced of the transmission between the
surface layer and the altitude τ
2. The contributions of the sources in all layers below the level τ, each
reduced by its relative transmission up to τ

surface



Solution for the Plane-Parallel Equation (7)

The radiance that arrives at the level τ from above is given by
1. Arriving from the TOA reduced of the transmission due to the TOA-level
τ layer
2. The contributions of the sources in all layers above level τ, each reduced
by its relative transmission up to τ

surface



Upward radiation at τ=0 (TOA) 

Contribution
from surface

reduced by the 
slant path

transmission of 
whole

atmosphere

Contribution from 
atmospheric internal

layers, each reduced by 
slant transmission of 

the overlaying
atmosphere

Useful for satellite remote sensing of surface!

If the radiance (↑) is observed at TOA τ = 0 instead of at a generic
level, we obtain the radiance that is observed outside the
atmosphere, for example by an instrument mounted on a satellite
for Earth observation (Earth Observation, EO)



Upward radiation at τ= τ* (surface) 

Contribution
from TOA 

reduced by 
the slant path
transmission 

of whole
atmosphere

Contribution from 
atmospheric internal

layers, each reduced by 
slant transmission of 

the underlaying
atmosphere

Useful for ground based remote sensing of space!

If instead the radiance ↓ is observed from the surface τ=τ* instead
of a generic level τ, we obtain the radiance measured by
instruments housed on the ground which they look at the
atmosphere or space.


