

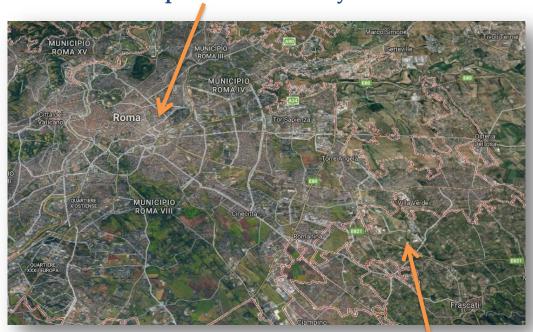
The Boundary-layer Air Quality-analysis Using Network of Instruments (BAQUNIN) Super-Site

for Satellite Atmospheric Chemistry Products Validation

A.M. Iannarelli (1), M. Cacciani (2), A. Scoccione (3), S. Casadio (1), M. Campanelli (3), A.M. Siani (2), G. Casasanta(3), H. Diemoz (4), E. Cadau (5), J. von Bismarck (6)

(1) Serco SpA (2) Physics Department, "Sapienza" University of Rome (3) CNR – ISAC (4) ARPA Valle d'Aosta, Saint-Christophe, Aosta (5)Sardegna Clima ONLUS (6) ESA/ESRIN SPPA

BAQUNIN Super-Site


Context: IDEAS+ support contract (ESA/ESRIN SPPA) and PANDONIA project (ESA)

Purpose: Joint instrumental suite for validating the satellite atmospheric composition and optical products (level 2), and for Planetary Boundary Layer (PBL) studies.

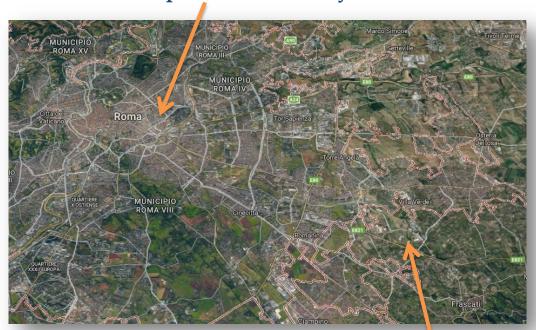
Super Site concept: Ground based active and passive remote sensing instruments are operating in synergy, offering quantitative and qualitative information for a wide range of atmospheric parameters for atmospheric chemistry (satellite) validation activities and Planetary Boundary Layer (PBL) studies

Locations

"Sapienza" University

ISAC-CNR Rome

Distance ~ 10 Km

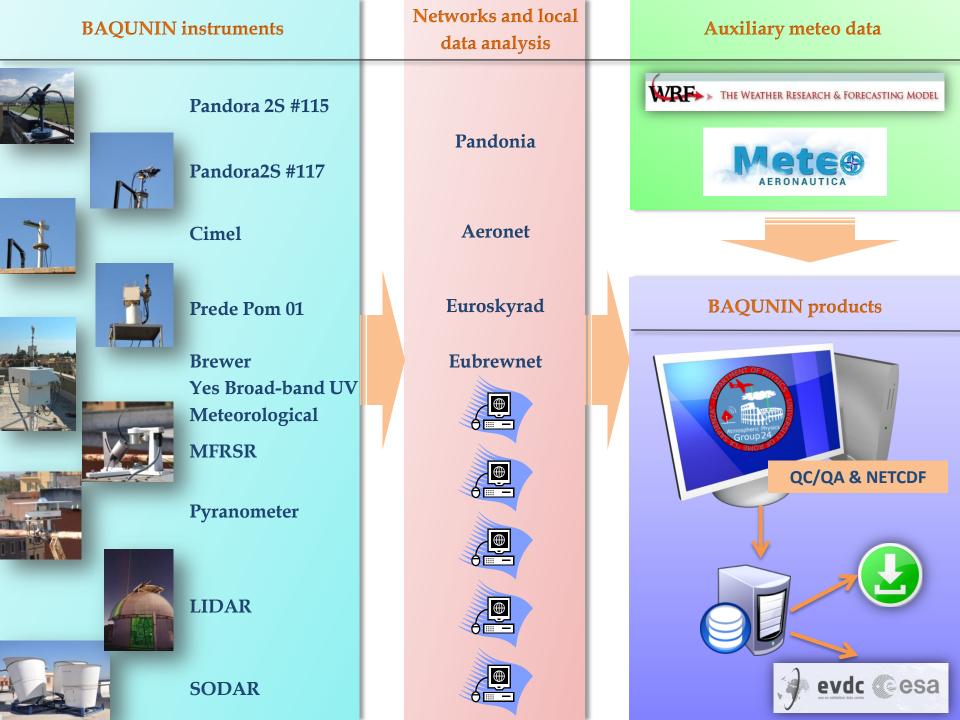

BAQUNIN Super-Site

Instruments

Pandora 2S Spectrometer #115 Pandora 2S Spectrometer #117 Cimel Photomer Prede Pom 01 Sun-sky radiometer **MFRSR** Radiometer **Pyranometer** Radiometer **Brewer** Spectrophotometer Yes Broad-band UV Radiometer **Meteorological Sensors** All Sky Camera LIDAR Raman and elastic **SODAR** triaxial Doppler

Locations

"Sapienza" University



ISAC-CNR Rome

Distance ~ 10 Km

BAQUNIN Super-Site products & instruments

Product	Instruments	
O3 surface, tropospheric and total columnar	PANDORA 2S, BREWER	
NO2 surface, tropospheric and total columnar	PANDORA 2S, BREWER	
SO2 surface, tropospheric and total columnar	PANDORA 2S	
HCOH surface, tropospheric and total columnar	PANDORA 2S	
H ₂ O columnar, profile	CIMEL, Raman LIDAR, PANDORA 2S, PREDE, MFRSR	
Aerosol Optical Depth (AOD)	CIMEL, PREDE, MFRSR, Elastic LIDAR, PANDORA 2S	
Aerosol backscattering and extinction profiles	Elastic LIDAR	
Scattering and Absorption Ångström Exponent (SAE & AAE)	CIMEL	
Angstrom Exponent (AE)	CIMEL, PREDE, PANDORA 2S	
Single Scattering Albedo (SSA)	CIMEL, PREDE	
Real and imaginary part of Refractive Index (Refr. Indx)	CIMEL, PREDE	
Volume size distribution (VSD)	CIMEL, PREDE	
Phase Function (PF)	CIMEL, PREDE	
Solar Irradiance	PYRANOMETER	
UV Dose, UV Index	BREWER	
Cloud boundary	Elastic LIDAR	
Cloud detection	All Sky Camera	
Thermal Turbolence	SODAR	
Wind Speed and Direction	SODAR	
Surface air temperature, relative humidity, pressure and wind	Meteorological sensors, WRF	

BAQUNIN Super-Site activities

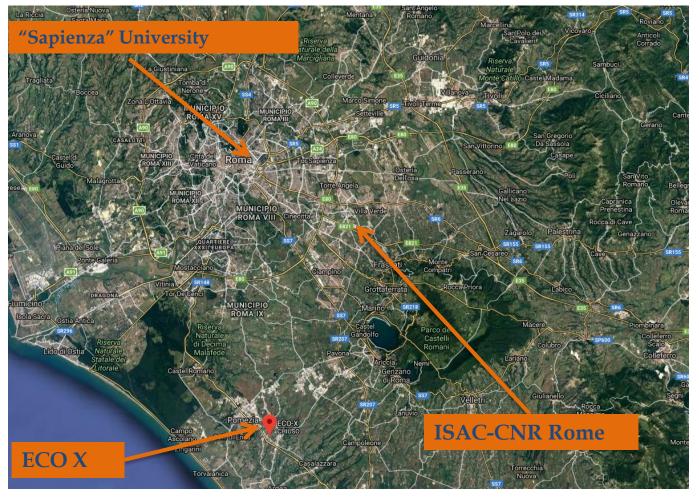
Nero come back in town!

- **▶Pomezia fire**, 5th May 2017
- **➤Tor Vergata fire,** 14th July 2017

18 July to 27 July, 64 AD

Nerō Claudius Caesar Augustus Germanicus

Measurement campaigns


LRMC-2017 May, 2017

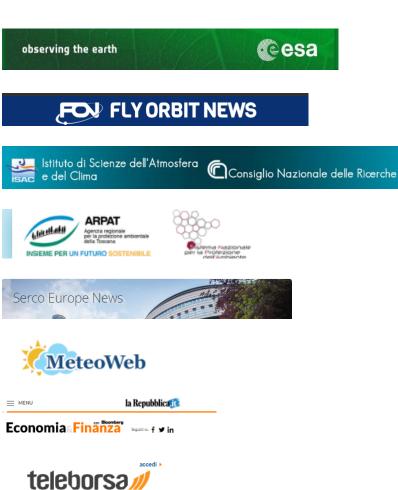
Lidar & Radiometer measurement campaign

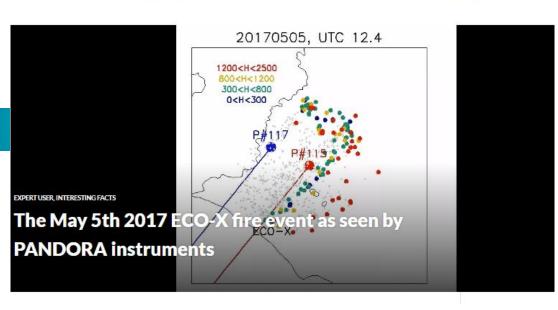
- ➤ H24 Experiment 18-19 May, 2017
 30 hours of continuous operation to test the system robustness
- **►EMeRGe** 10-30, July, 2017 Effect of Megacities on the Transport and Transformation of Pollutants on the Regional to Global Scales
- **>QUATRAM** October, 2017 **QUAlity and TRaceabiliy of Atmospheric aerosol Measurements**
- **▶VIEPI** November, 2017 August, 2018 **Valutazione Integrata dell'Esposizione a Particolato in ambiente indoor**

On 5th of May, at around 6 UTC, a blaze started at the ECO-X rubbish depot in Pomezia, a municipality in the Metropolitan City of Rome (~ 50 Km).

The fire was active for about two days and the cloud of smoke was visible from several kilometres away.

The smouldering rubbish, which included plastics, sent a toxic cloud into the sky forcing both the fire service and the local health authority of Pomezia, to warn locals to keep windows closed in homes, schools, offices, and health and social care structures, keep animals inside, and to avoid all unnecessary travel.



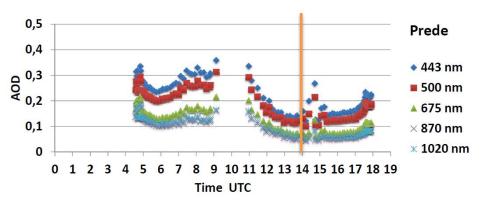


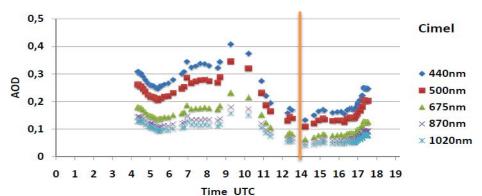
https://www.earthstartsbeating.com

Tor Vergata fire, 14th July 2017

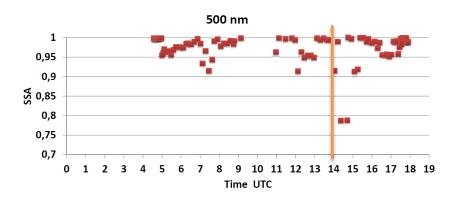
In the afternoon (14:00 utc) of July 14th a fire broke out in eastern suburbs of the capital, Tor Vergata. A high smoke column has approached dangerously the buildings.

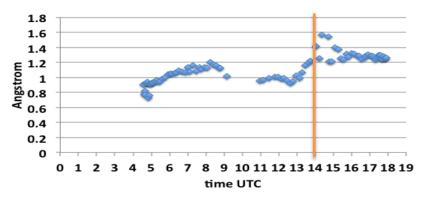
The burning area was at a distance of 1.5 Km from CIRAS ISAC-CNR site.




Tor Vergata fire, 14th July 2017

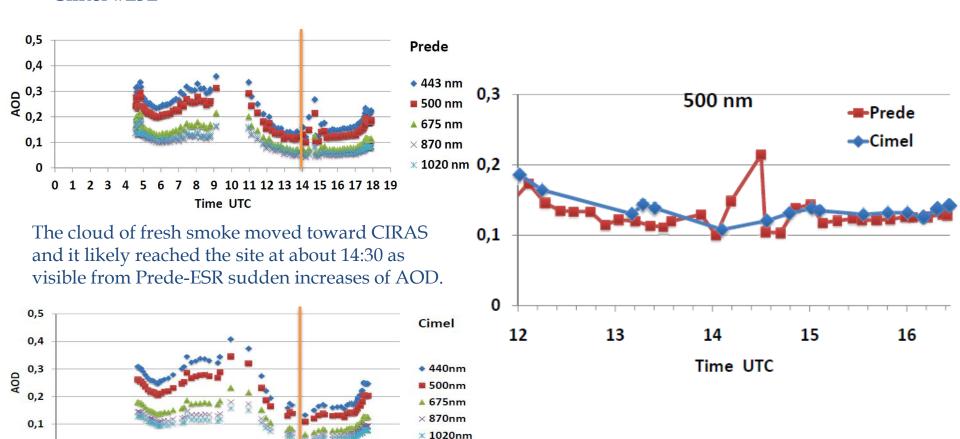
Operating instruments in CNR-ISAC:


- •Prede Pom
- •Cimel #232



The cloud of fresh smoke moved toward CIRAS and it likely reached the site at about 14:30 as visible from Prede-ESR sudden increases of AOD.

The cloud screening of Cimel – Aeronet detected this sudden increase as cloud and rejected the measurement.


From PREDE-ESR analysis the presence of fresh carbonaceous particles is hilighted by simultaneous

- Lower SSA (more absorbent particles)
- Higher Angstrom exponent (smaller partcles)

Tor Vergata fire, 14th July 2017

Operating instruments in CNR-ISAC:

- •Prede Pom
- •Cimel #232

The cloud screening of Cimel – Aeronet detected this sudden increase as cloud and rejected the measurement.

10 11 12 14 15 16 17 18 19

LRMC-2017

Lidar&Radiometer measurement campaign

May, 2017

Campaign object:

- Integration of EARLINET, AERONET and CALIPSO data to monitor long range aerosol transformations.
- Development and test of algorithms and the necessary software for retrieval of aerosol mode concentration profiles from CALIOP and ground-based data

Requirements for ground-based equipment

- Lidar: provides the measurements of intensity of backscatter signals at the wavelengths: 1064 nm 532 nm 355 nm
- Radiometer: collocated station of AERONET.

Measurement conditions:

- Day-time combined lidar and radiometer measurements
- The data of coordinated ground-based and CALIOP measurements (in the region about 80-100 km) are of particular significance

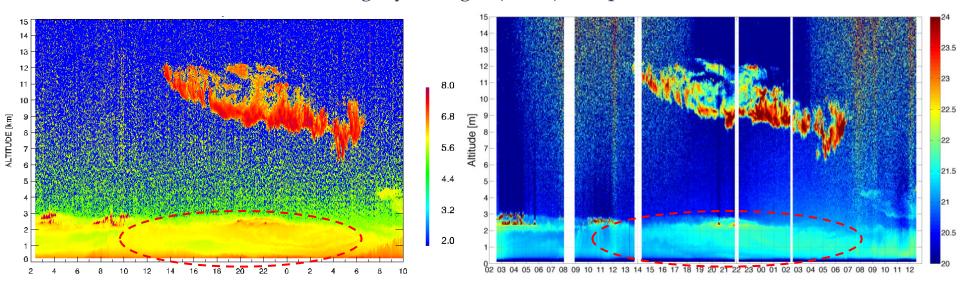
Date	Time (utc)
21/05/2017	1:23
	12:29
30/05/2017	1:17
	12:23

2 hours of Lidar measurements for each overpass

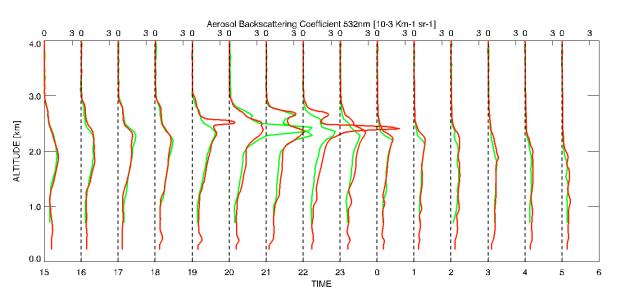
Data Processing

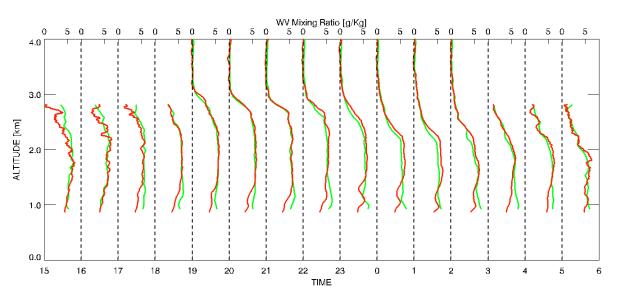
Ground-based lidars and CALIOP data was gathered by IPNASB (Minsk) team

Data analysis is work in progress!

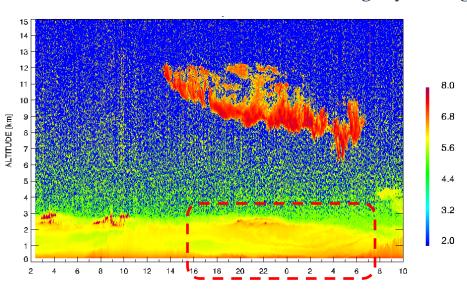

30 hours of continuous operation to test the system robustness

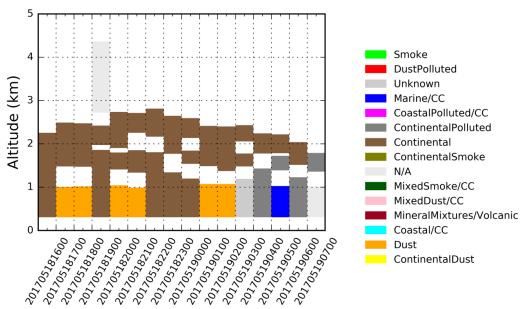
18-19 May, 2017


Ground based active and passive remote sensing instruments located in **BAQUNIN** and **CIRAS ISAC-CNR** sites are operating in synergy, offering information for a wide range of atmospheric parameters.


Instrument type	Products	BAQUNIN	CIRAS
Elastic & Raman LIDARs	Aerosol backscattering and extinction, H2O profiles, AOD, cloud boundaries	***	**
Ceilometer	Aerosol backscattering profile, cloud boundaries		**
SODAR	Thermal turbulence, wind speed and direction profiles	***	**
RADAR	Precipitation		88
MFRSR	Total column of AOD, O3, H2O	***	
POM 01 L (PREDE)	AOD, SSA, AE, Refr. Indx, PF, VSD	***	
Brewer	Total Column of O3, NO2 and SO2, UV Dose and UV Index	***	
Pandora	Total Column of NO2, O3, HCHO, others	***	**
Meteorological sensors	Air temperature, RH, pressure, wind, SW and LW radiation	***	**
CIMEL	Total column of AOD and H2O, SAE, AAE, SSA, Refr. Indx, VSD	***	**

Evolution of the mixing layer height (MLH) and presence of a cirrus


Evolution of the mixing layer height (MLH) and presence of a cirrus



Temporal evolution of the 1-h integrated aerosol backscatter and Water Vapor Mixing Ratio profiles derived by BAQUNIN and CIRAS lidars during H24 experiment

Evolution of the mixing layer height (MLH) and presence of a cirrus

Example of the employment of the Neural network Aerosol Typing Algorithm based on LIdar data (NATALI) using BAQUNIN measurements

EMeRGe

Effect of Megacities on the Transport and Transformation of Pollutants on the Regional to Global Scales

EMeRGe project led by the Institute of Environmental Physics of the University of Bremen.

Aim:

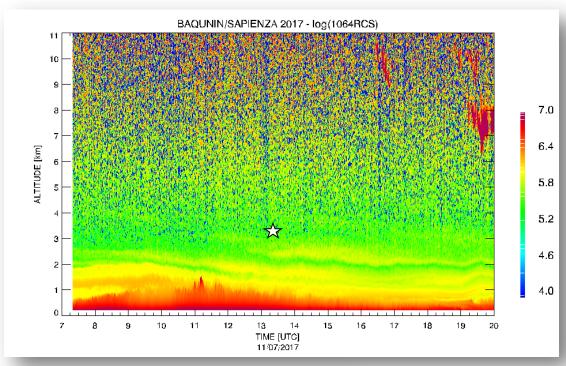
To investigate experimentally the patterns of atmospheric transport and transformation of pollution plumes originating from European megacities and Major Population Centers **Description of Campaign:**

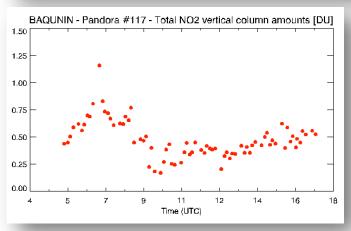
• Measurements of key reactive gases and aerosols will be performed by the German Gulfstream HALO aircraft in North Europe and in the Mediterranean area.

•Simultaneously with the aircraft flights, both gas and aerosol measurements will be performed from the ground, using in situ and remote sensing devices in the atmospheric observatories.

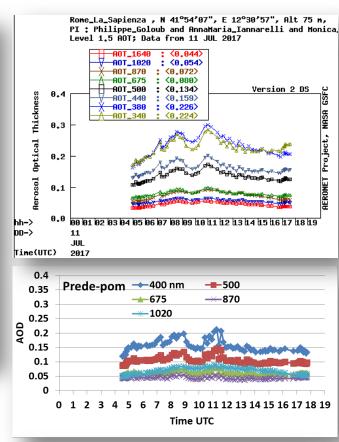
Observatories involved in this project in Rome area:

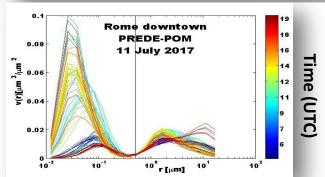
- ■BAQUNIN (University 'La Sapienza')
- CIRAS, ISAC-CNR (Tor Vergata)


First flight of Halo on Rome, July 11


EMeRGe

Effect of Megacities on the Transport and Transformation of Pollutants on the Regional to Global Scales


Measures at BAQUININ	Flight July 11	Flight July 20
Raman and elastic LiDAR (355, 532, 1064 nm)	Continuous measurement during the period [7:30 -20:00]	Continuous measurement during the period [7:30 -20:00]
SKYNET-POM01 sunphotometer (400, 500, 675,870, 1020 nm)	AOD, Angstrom exponent (every 1 min), Volume size distribution, SSA,refractive index (every 10 min)	AOD, Angstrom exponent (every 1 min), Volume size distribution, SSA,refractive index (every 10 min)
AERONET - CIMEL Sunphotometer (340, 380,440,500,675,870, 1020,1640 nm)	AOD, Angstrom exponent AOD_fine and coarse (every 15 min) Volume size distribution, SSA,refractive index (when inversion is avalible)	AOD, Angstrom exponent AOD_fine and coarse (every 15 min) Volume size distribution, SSA,refractive index (when inversion is avalible)
MFRSR (496, 624, 670, 878 nm)	AOD (every 30 s)	AOD (every 30 s)
PANDORA spectrometer	NO2, O3	NO2, O3
In Situ Particle counters	Number of particles (every 1 min) with diameters (um) within: 0.3 - 0.5; 0.5 - 0.7; 0.7-1.0; 1.0-2.0; 2.0-3.0; 3.0-5.0; 5.0-10.0.	


EMeRGe BAQUNIN Flight July 11

Vertical profiles by the elastic Lidar at 1064 The HALO aircraft passage over the observatory is indicated with a star

QUATRAM

QUAlity and TRaceabiliy of Atmospheric aerosol Measurements

October, 2017

Aim:

SKYNET network has been recently included as WMO-GAW contributing network and a program of traceability to CIMO defined standard instruments and methods, together with inter-comparison and calibration of the European branch (ESR) of SKYNET master instruments is necessary.

Description of Campaign:

Simultaneusly measurements performed by all the instruments

QUATRAM

Instrument	Institutions	Personnel	
PREDE POM 01	ISAC-CNR	M.Campanelli	
PREDE POM 01	University of Valencia	V. Estelles	
PREDE POM 02	Arpa Valle D'Aosta	H. Diemoz	
PREDE POM 01	Italian Air Force	Magg. S. Vergari	
Cimel CE 318	ESRIN	M.Campanelli, A.M. Iannarelli	
Pandora	ESRIN	A.M. Iannarelli (SERCO)	
PFR	PMOD	S. Kazadzis, N.Kouremeti	
MFRSR	University of Rome La Sapienza	M. Cacciani	L
MFRSR	ENEA	A.G. di Sarra	
2 Middleton	ENEA	G. Pace	
Microtop	ISAC - CNR	F. Barnaba	

Leading the program

Providing the PREDE-POM sun-photometer as "primary master"

Providing calibration to the "primary master" Hosting the Campaign (G24 research group)

VIEPI

Valutazione Integrata dell'Esposizione a Particolato in ambiente indoor

(Integrated Evaluation of the Particulate Exposure in an indoor environment)

November, 2017 - August, 2018

The project is coordinated and financed by the National Institute for Occupational Safety Insurance research area (INAIL)

Aim:

Determination of the infiltration factor of particulate matter present in the atmosphere of work and teaching environments, through environmental monitoring and numerical modeling.

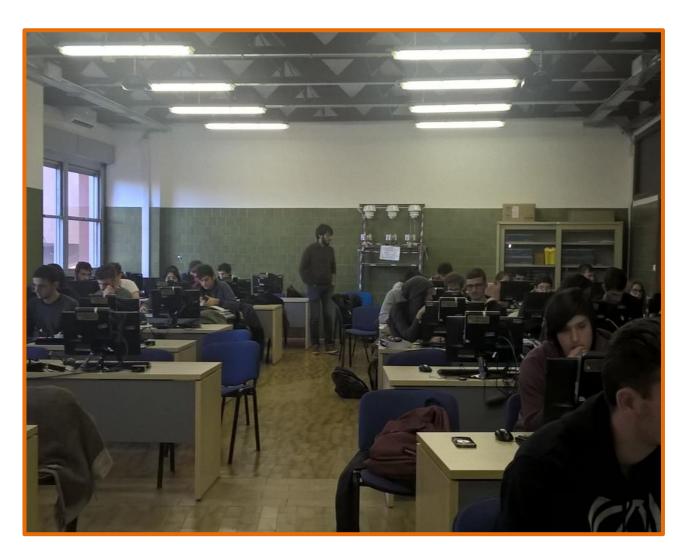
Description of Campaign:

Sapienza –University of Rome is the selected area for monitoring activities, and the Physics Department for indoor measurements, also to take advantage of the observation and research instruments already present and operative at the Atmospheric Physics groups (BAQUNIN, G24 and GMET).

This instrumentation is supplemented by equipment provided by the other parties involved in the project: INAIL, Sapienza-DICEA (Department of Civil and Environmental Engineering), Chemistry department, CNR-IIA (Atmospheric Pollution Institute) and ISPRA (Higher Institute for the Protection and Environmental Research).

VIEPI

Instruments:


WindMaster 3D Sonic Anemometer Volumetric sampler VPPS 2000 Fast Mobility Particle Sizer Spectrometer Microclimatic control unit BABUC-A Condensation Particle Counter Sioutas Personal Cascade Impactor

PM10 Particulate Samplers

VIEPI

Physics Department building: teaching environments

BAQUNIN Next activities

Work in progress on data

- •Evaluation of data uncertainty
- •QA/QC procedure

Participation to **DIVA** experiment

Demonstration of an Integrated approach for the Validation and exploitation of Atmospheric missions

Cal/Val activities for:

- Sentinel 5p
- EarthCARE mission

SORBETTO (SOlar Radiation Based Established Techniques for aTmospheric Observations) Summer school, Rome, July 2018 Aim

Forming and informing the new generations but also curious scientists, on To be confirmed! the current status of solar radiation based techiques.

Invited speakers from the main Institutions in Europe, Japan and Australia

Contact: Monica Campanelli, m.campanelli@isac.cnr.it

	BAQUNIN Staff	
Jonas von Bismarck	Jonas.Von.Bismarck@esa.int	ESA ESRIN
Stefano Casadio	Stefano.Casadio@esa.int	SERCO / ESA ESRIN
Anna Maria Iannarelli	Annamaria.Iannarelli@serco.com	SERCO / Univ. Sapienza
Marco Cacciani	Marco.Cacciani@uniroma1.it	Univ. Sapienza
Andrea Scoccione	AndreaScoccione@libero.it	Univ. Sapienza (now CNR)
Monica Campanelli	Campanellimonica@gmail.com	CNR Tor Vergata
Giampietro Casasanta	g.casasanta@isac.cnr.it	CNR Tor Vergata
Annamaria Siani	Annamaria.Siani@uniroma1.it	Univ. Sapienza
Daniele Di Erasmo	Daniele.dierasmo@serco.com	SERCO
Enrico Cadau	Enrico.Cadau@esa.int	Sardegna Clima ONLUS

Thank you for your attention!

